photo
Dr. Olivier Sète


Email: sete at math.tu-berlin.de


Research

I'm a postdoctoral researcher in mathematics. My research interests are in numerical mathematics, computational complex analysis, and their applications in mathematics and the sciences. They include:

  • approximation theory, in particular rational approximation and polynomial approximation
  • numerical methods for the Helmholtz equation
  • conformal mapping and potential theory
  • harmonic mappings and their application in gravitational lensing in astrophysics

Profiles:

Prizes

  • Frontiers of Science Award together with Yuji Nakatsukasa and Nick Trefethen for “The AAA algorithm for rational approximation”, awarded at the International Congress of Basic Science 2023.

Publications

Recent publications and Preprints

  1. Klaus Schiefermayr and Olivier Sète, Walsh's conformal map onto lemniscatic domains for several intervals, 2024, submitted. arXiv
  2. Yuji Nakatsukasa, Olivier Sète, and Lloyd N. Trefethen, The first five years of the AAA algorithm, 2023, submitted. arXiv

Refereed Journal Publications

  1. Olivier Sète and Jan Zur, On the zeros of polyanalytic polynomials, Journal of Mathematical Analysis and Applications, 540(1) (2024), 128595. arXiv
  2. Klaus Schiefermayr and Olivier Sète, Walsh's conformal map onto lemniscatic domains for polynomial pre-images II, Computational Methods and Function Theory, 24 (2024), pp. 257-281. arXiv
  3. Roland Pulch and Olivier Sète, Stochastic Galerkin method and port-Hamiltonian form for linear first-order ordinary differential equations, International Journal for Uncertainty Quantification, 14(4) (2024), pp. 65-82. arXiv
  4. Roland Pulch and Olivier Sète, The Helmholtz equation with uncertainties in the wavenumber, Journal of Scientific Computing, 98(3) (2024), article number 60. arXiv
  5. Klaus Schiefermayr and Olivier Sète, Walsh's conformal map onto lemniscatic domains for polynomial pre-images I, Computational Methods and Function Theory, 23 (2023), pp. 489-511. arXiv
  6. Sergei Kalmykov, Béla Nagy, and Olivier Sète, Minimal degree rational open up mappings and related questions, Annales Fennici Mathematici, 48(2) (2023), pp. 429-451. arXiv
  7. Jörg Liesen, Mohamed M.S. Nasser, and Olivier Sète, Computing the logarithmic capacity of compact sets having (infinitely) many components with the Charge Simulation Method, Numerical Algorithms, 93 (2023), pp. 581-614. arXiv
  8. Olivier Sète and Jan Zur, The transport of images method: computing all zeros of harmonic mappings by continuation, IMA Journal of Numerical Analysis, 42(3) (2022), pp. 2403-2428. Free access article link. arXiv
  9. Luis García Ramos, Olivier Sète, and Reinhard Nabben, Preconditioning the Helmholtz equation with the shifted Laplacian and Faber polynomials, Electronic Transactions on Numerical Analysis, vol. 54, 2021, pp. 534-557.
  10. Olivier Sète and Jan Zur, Number and location of pre-images under harmonic mappings in the plane, Annales Fennici Mathematici, 46(1) (2021), 225–247. arXiv
  11. Robert Luce and Olivier Sète, The index of singular zeros of harmonic mappings of anti-analytic degree one, Complex Variables and Elliptic Equations, 66:1 (2021), 1-21. Available as Oberwolfach Preprint OWP 2017-03. arXiv
  12. Olivier Sète and Jan Zur, A Newton method for harmonic mappings in the plane, IMA Journal of Numerical Analysis, 40(4) (2020), pp. 2777-2801. Free access article link. arXiv
  13. Yuji Nakatsukasa, Olivier Sète, and Lloyd N. Trefethen, The AAA algorithm for rational approximation, SIAM Journal on Scientific Computing, 40-3 (2018), pp. A1494-A1522. arXiv
  14. Jörg Liesen, Olivier Sète, and Mohamed M.S. Nasser, Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets, Computational Methods and Function Theory, 17(4) (2017), 689-713. arXiv
  15. Olivier Sète and Jörg Liesen, Properties and examples of Faber--Walsh polynomials, Computational Methods and Function Theory, 17(1) (2017), 151-177. arXiv
  16. Mohamed M.S. Nasser, Jörg Liesen, and Olivier Sète, Numerical computation of the conformal map onto lemniscatic domains, Computational Methods and Function Theory, 16(4) (2016), 609-635. arXiv
  17. Olivier Sète and Jörg Liesen, On conformal maps from multiply connected domains onto lemniscatic domains, Electronic Transactions on Numerical Analysis, vol. 45, pp. 1-15, 2016. arXiv
  18. Robert Luce, Olivier Sète, and Jörg Liesen, A Note on the Maximum Number of Zeros of r(z)−z̅, Computational Methods and Function Theory, 15(3) (2015), 439-448. arXiv
  19. Olivier Sète, Robert Luce, and Jörg Liesen, Creating images by adding masses to gravitational point lenses (Editor's Choice), General Relativity and Gravitation, 47, Article number: 42, 2015. arXiv
  20. Olivier Sète, Robert Luce, and Jörg Liesen, Perturbing rational harmonic functions by poles, Computational Methods and Function Theory, 15(1) (2015), 9-35. arXiv
  21. Robert Luce, Olivier Sète, and Jörg Liesen, Sharp parameter bounds for certain maximal point lenses (Editor's Choice), General Relativity and Gravitation, 46, Article number: 1736, 2014. arXiv

Further Publications

  1. Sergei Kalmykov, Béla Nagy, and Olivier Sète, Rational Interpolation and Open-Up Mappings, Mathematical Notes, 112, 483-487 (2022).
  2. Jussi Behrndt and Olivier Sète, On the nonreal eigenvalues of elliptic differential operators with indefinite weights on Lipschitz domains, Proceedings in Applied Mathematics and Mechanics, 9 (2009), 667-668; pdf.

Theses

  1. Olivier Sète, On Interpolation and Approximation Problems in Numerical Linear Algebra, Doktorarbeit (PhD Thesis), Technische Universität Berlin, 2016.
  2. Olivier Sète, Ein Modell für unendlichdimensionale singuläre Störungen von elliptischen Differentialoperatoren, Diplomarbeit (Diploma Thesis), Technische Universität Berlin, 2009.

Software

Selected talks

Teaching

Teaching as lecturer

I was a lecturer of the following courses.

Teaching as teaching assistant at Universität Greifswald

Semester Course
summer term 2023 Analysis II
summer term 2023 Numerik I
winter term 2022-2023 Numerik Grundpraktikum
winter term 2022-2023 Numerik II
summer term 2022 Approximation
winter term 2021-2022 Numerik Grundpraktikum
winter term 2021-2022 Numerik II

Teaching as teaching assistant at TU Berlin

Semester Course
summer term 2021 Integraltransformationen und partielle Differentialgleichungen für Ingenieurwissenschaften
winter term 2020-2021 Early Bird (Analysis I und Lineare Algebra für Ingenieurwissenschaften)
winter term 2019-2020 Analysis I und Lineare Algebra für Ingenieurwissenschaften
summer term 2019 Analysis I und Lineare Algebra für Ingenieurwissenschaften
winter term 2018-2019 Analysis I und Lineare Algebra für Ingenieurwissenschaften
summer term 2018 Analysis I und Lineare Algebra für Ingenieurwissenschaften
winter term 2017-2018 Analysis I und Lineare Algebra für Ingenieurwissenschaften
summer term 2017 Analysis I für Ingenieurwissenschaften
summer term 2015 Lineare Algebra I
winter term 2014-2015 Lineare Algebra II
summer term 2014 Lineare Algebra I
winter term 2013-2014 Early-Bird (Analysis I und Lineare Algebra für Ingenieurwissenschaften)
summer term 2013 Lineare Algebra II
winter term 2012-2013 Lineare Algebra I
winter term 2012-2013 Early-Bird (Analysis I und Lineare Algebra für Ingenieurwissenschaften)
winter term 2011-2012 Early-Bird (Analysis I und Lineare Algebra für Ingenieurwissenschaften)
summer term 2011 Analysis III für Ingenieure
summer term 2011 Analysis III
winter term 2010-2011 Lineare Algebra II
summer term 2010 Lineare Algebra I
winter term 2009-2010 Analysis III
summer term 2009 Analysis II für Ingenieure

Teaching as student teaching assistant at TU Berlin

I was a student teaching assistant (Tutor) of the following courses at TU Berlin.

Semester Course
winter term 2008-2009 Lineare Algebra II
summer term 2008 Lineare Algebra I
winter term 2007-2008 Lineare Algebra II
summer term 2007 Lineare Algebra II
winter term 2006-2007 Lineare Algebra I
summer term 2006 Analysis II
winter term 2005-2006 Analysis I